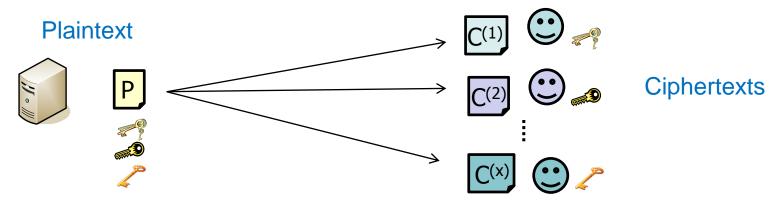


15 August, 2013 SAC 2013 @ Simon Fraser University

How to Recover Any Byte of Plaintext on RC4

Toshihiro Ohigashi (Hiroshima University) Takanori Isobe (Kobe University) Yuhei Watanabe (Kobe University) Masakatu Morii (Kobe University)



Target

Broadcast setting

- Same plaintext is encrypted with different (user) keys (e.g. Group mail)
- can be easily converted into the multi-session setting of SSL/TLS
 - Target plaintext blocks are repeatedly sent in the same position of plaintext

- Plaintext Recovery Attack in the broadcast/multi-session setting
 - Recover a plaintext from ONLY ciphertexts encrypted by different keys
 - Passive attack
 - What attacker should do is to collect ciphertexts
 - NOT use additional information such as side channel information

Related Works

Plaintext Recovery Attack on (pure) RC4 in these settings

- Mantin-Shamir Attack (FSE 2001)
 - recover 2^{nd} byte of a plaintext from Ω (*N*) ciphertexts with probability more than a random search, where N = 256
- Maitra-Paul-SenGupta Attack (FSE 2011)
 - recover 3^{rd} to 255^{th} bytes of a plaintext from Ω (N^3) ciphertexts with probability more than a random search, where N = 256
- Isobe-Ohigashi-Watanabe-Morii Attack (FSE 2013)
 - recover 1^{st} to 257^{th} bytes of a plaintext from 2^{32} ciphertexts with probability of > 0.5
 - recovery first 1 petabytes of a plaintext from 2³⁴ ciphertexts with probability closed to one
- AlFardan-Bernstein-Paterson-Poettering-Schuldt Attack (USENIX Security 2013, Aug. 15, 2013, Today !)
 - recover 1st to 256th bytes of a plaintext from 2³² ciphertexts with probability of > 0.96

Related Works

Plaintext Recovery Attack on (pure) RC4 in these settings

- Mantin-Shamir Attack (FSE 2001)
 - recover 2^{nd} byte of a plaintext from Ω (*N*) ciphertexts with probability more than a random search, where N = 256
- Maitra-Paul-SenGupta Attack (FSE 2011)
 - recover 3^{rd} to 255^{th} bytes of a plaintext from Ω (N^3) ciphertexts with probability more than a random search, where N = 256
- Isobe-Ohigashi-Watanabe-Morii Attack (FSE 2013)
 - recover 1st to 257th bytes of a plaintext from 2³² ciphertexts with probability of > 0.5

But, these attacks do not work on a relatively secure implementation of RC4 (RC4-drop)

- disregards the first *n* bytes of a keystream of RC4
 - * recommendation: n=512 or 768, (conservative) n = 3072 by Mironov in CRYPTO 2002

Summary of Our Results

Security Evaluation of RC4-drop in the Broadcast/Multi-session Setting

Results

Plaintext recovery attack using Known Partial Plaintext Bytes

- Based on Mantin's long-term bias in EUROCRYPT 2005
- Given consecutive 6 bytes of a target plaintext and 2³⁴ ciphertexts with different keys, consecutive 1 petabytes of the plaintext are recovered with probability more than 0.6

Guess-and-Determine Plaintext Recovery Attack

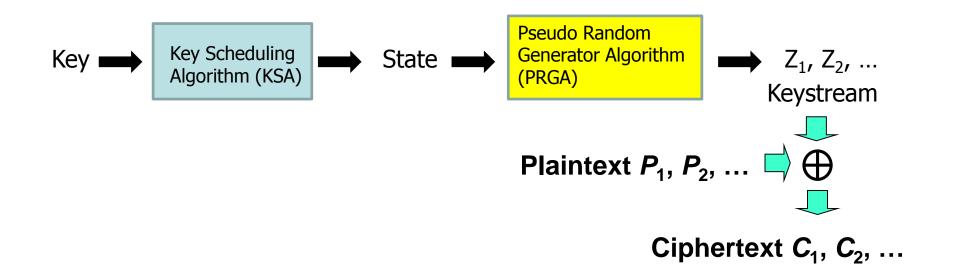
- Combine use of Mantin's long-term bias and Fluhrer-McGrew long-term bias in FSE 2000
- Not Require any previous knowledge of a plaintext
- Given 2³⁵ ciphertexts with different keys, any position of the plaintext byte is recovered with probability close to one
 2³⁵ ciphertexts

HIROSHIMA UNIVERSITY

Agenda

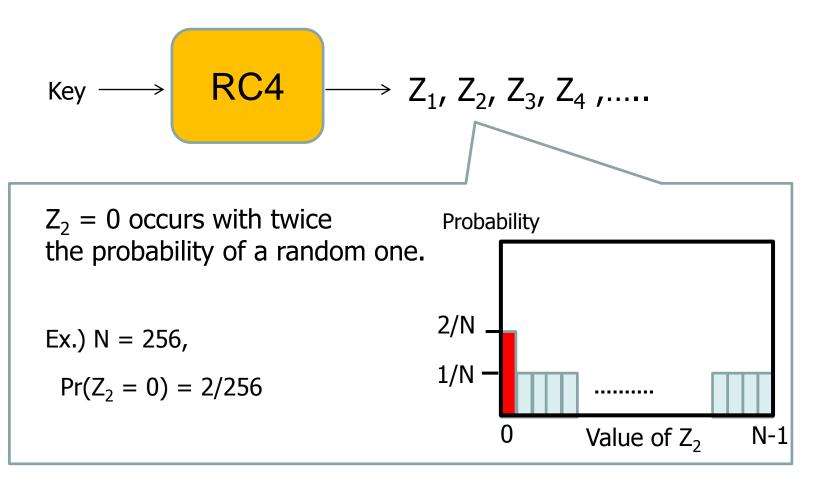
- RC4 Stream Cipher
- Previous Plaintext Recovery Attacks
- Plaintext Recovery Attack using Known Partial Plaintext Bytes
- Guess-and-Determine Plaintext Recovery Attack
- Conclusion

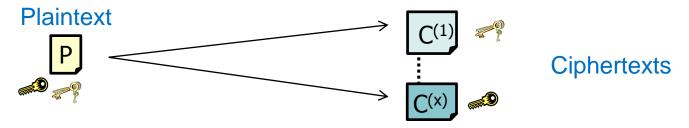
RC4



- is widely used, e.g. SSL/TLS, WEP/WPA and more.
- Parameter
 - 1-256 byte key (typically 16 byte (=128 bit) key)
 - State size N bytes (typically N = 256)

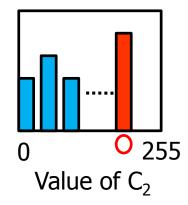
We focus on - 16 byte (128 bit) key


- 256 byte state


Mantin-Shamir Attack [MS01]

- Proposed in FSE 2001
- Second byte of the keystream is strongly biased to "0"

Plaintext Recovery Attack [MS01]


Broadcast setting : same plaintext is encrypted with different keys

Relation : " $C_2 = P_2 XOR Z_2$ "

- If $Z_2 = 0$ (strong bias), then $C_2 = P_2$
- Most frequent value of C₂ can be regarded as P₂

Evaluation

Given Ω (N) ciphertexts encrypted by different keys,

P2 can be extracted with higher probability than a random search

Plaintext Recovery Attack in FSE 2013

- Proposed by Isobe, Ohigashi, Watanabe and Morii
- is constructed by two phases
 - Initial byte recovery phase: recover initial 257 bytes of a plaintext
 - Sequential recovery phase: recover the later bytes of a plaintext using a knowledge of the first 257 bytes of a plaintext

Step 2: recovered by the sequential recovery phase
(using Mantin's long-term bias)

$$P_1 P_2 \dots P_{192} \dots P_{256} P_{257} P_{258} P_{259} P_{260} \dots$$

$$Z_1 Z_2 \dots Z_{192} \dots Z_{256} Z_{257} Z_{258} Z_{259} Z_{260} \dots$$

$$C_1 C_2 \dots C_{192} \dots C_{256} C_{257} C_{258} C_{259} C_{260} \dots$$
Other previous attacks are also included
Step 1: Recovered by the initial bytes recovery phase
Conditional bias $Z_1=0|Z_2=0$
Single byte biases:
 $Z_2 = 0, Z_3 = 131, Z_4 = 0, Z_r = r$ for $r = 5...31, Z_0 = 0$ for $r = 32...256$
 $Z_r = -r$ for $r = 16, 32, 48, 64, 80, 96, 112, Z_{257} != 0$ (negative bias)

Countermeasure: RC4-drop

- is relatively secure RC4 implementation
- disregards the first n bytes of a keystream of RC4
 - recommendation(conservative) : n=3072

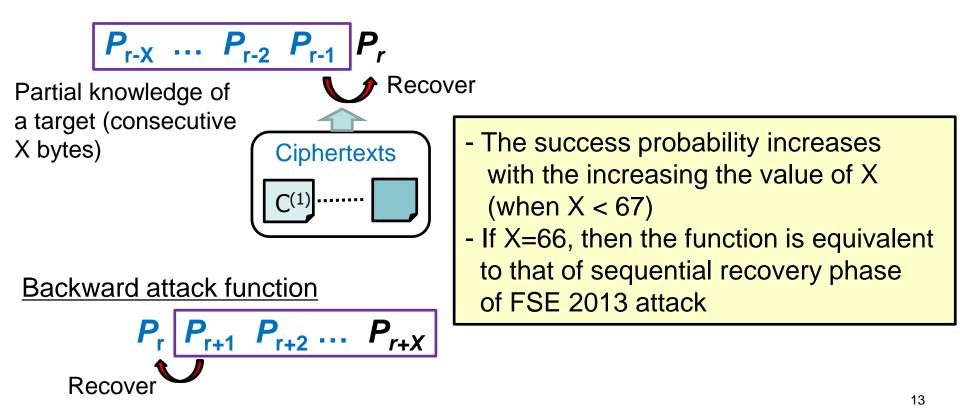
RC4
$$\downarrow$$
 $Z_1, Z_2, \dots Z_n, Z_{n+1}, \dots$ \downarrow \downarrow Ciphertext C_1, C_2, \dots
disregard

Initial byte biases are removed in RC4-drop (Initial bytes recovery phase does not work)

Previous Attacks does not work on RC4-drop

IROSHIMA UNIVERSITY

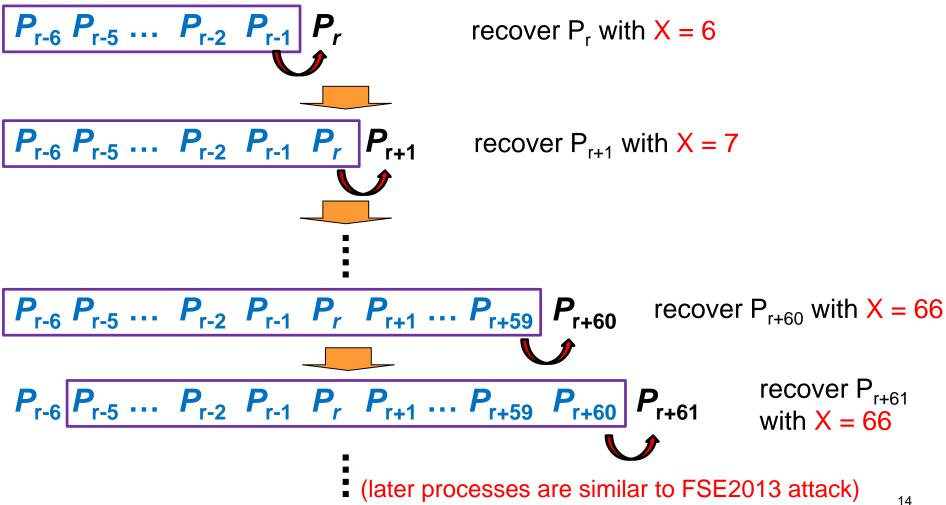
Agenda


- RC4 Stream Cipher
- Previous Plaintext Recovery Attacks
- Plaintext Recovery Attack using Known Partial Plaintext Bytes
- Guess-and-Determine Plaintext Recovery Attack
- Conclusion

Plaintext Recovery Attack using Known Partial Plaintext Bytes

HIROSHIMA UNIVERSITY

- is simply extension of FSE 2013 attack
 - use partial knowledge of a target plaintext
 - Based on sequential recovery phase (Mantin's long-term bias)


Forward attack function

HIROSHIMA UNIVERSITY

Example: consecutive 6 bytes of a target plaintext are known

Pre-known

HIROSHIMA UNIVERSITY

Experimental Result

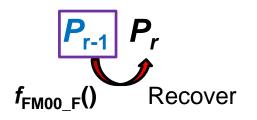
- Probability for recovering (X+1)th byte of a plaintext using the knowledge of X bytes of the plaintext on RC4-drop(3072)
- Obtained from 128 test 1 --2^31 # of ciphertexts: -2^32 0.8 2³¹, 2³², 2³⁶ Probability 0.6 ■ X = 3, 4, ..., 66 -2^35 0.4 0.2 0 **Evaluation** 20 40 60 80 0 # of known partial plaintext bytes (X)
- **ex.)** consecutive 6 bytes of a target plaintext and 2³⁴ ciphertexts are given Consecutive 1petabyte of plaintext are recovered with probability of

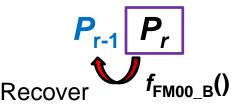
Experimental Result

- Probability for recovering (X+1)th byte of a plaintext using the knowledge of X bytes of the plaintext on RC4-drop(3072)
- Obtained from 128 test -2^3 # of ciphertexts: 0.8 -2^32 2³¹, 2³², 2³⁶ Probability 0.6 ■ X = 3, 4, ..., 66 -2^35 0.4 0.2 0 **Evaluation** 20 40 60 0 80 # of known partial plaintext bytes (X)
- **ex.)** consecutive 6 bytes of a target plaintext and 2^{34} ciphertexts are given Consecutive 1petabyte of plaintext are recovered with probability of $0.8125 \times 0.8750 \times 0.9375 \times 0.9688 \times 0.9922 \times 0.9922 \sim 0.636$

HIROSHIMA UNIVERSITY

Agenda

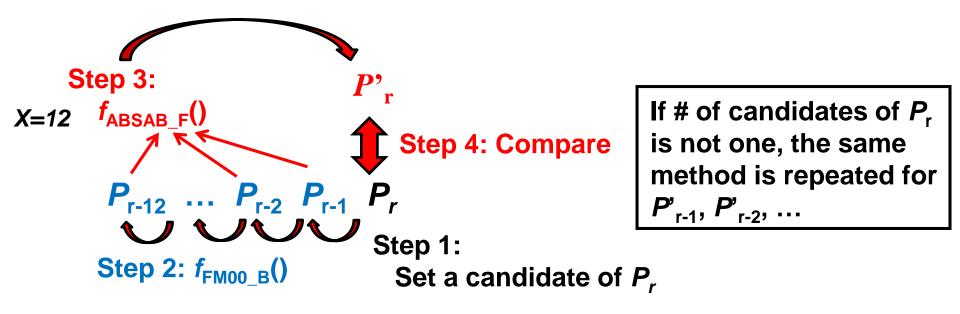

- RC4 Stream Cipher
- Previous Plaintext Recovery Attacks
- Plaintext Recovery Attack using Known Partial Plaintext Bytes
- Guess-and-Determine Plaintext Recovery Attack
- Conclusion


Guess and Determine Plaintext Recovery Attack

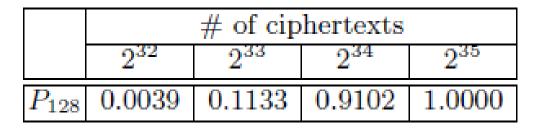
- does not require any previous knowledge of a plaintext
- uses attack functions based on two long-term biases
 - Mantin's long-term bias in EUROCRYPT 2005 (ABSAB bias)
 - Fluhrer-McGrew long-term bias in FSE 2000 (FM00 bias)

Attack function based on ABSAB bias (the same as the first attack)

Attack function based on FM00 bias (NEW) (conditional bias of FM00 bias)



Attack Procedure


- 1. Guess the value of P_r
- 2. Recover X bytes of the plaintext from P_r (guessed in Step 1) by using the attack function based on FM00 bias
- 3. Recover P'_r from P_{r-x} , ..., P_{r-1} (guessed in Step 2) by using the attack function based on ABSAB bias
- 4. If P'_r is not equal to P_r guessed in Step 1, the value is wrong. Otherwise the value is regarded as a candidate of correct P_r

Experimental Result

- Probability for recovering a byte of a plaintext on RC4drop(3072)
- Obtained from 256 test
- # of ciphertexts: 2³², 2³³, 2³⁴, 2³⁵
- **Target Plaintext byte in this experiment:** P_{128}

- Given 2³⁵ ciphertexts, our attack can recover any plaintext byte with probability close to one
- Given 2³⁴ ciphertexts, our attack can recover any plaintext byte with probability of about 0.91

Conclusion

Security Evaluation of RC4-drop in the Broadcast/Multi-session Setting

Results

Plaintext recovery attack using Known Partial Plaintext Bytes

Given consecutive 6 bytes of a target plaintext and 2³⁴ ciphertexts with different keys, consecutive 1 petabytes of the plaintext are recovered with probability of more than 0.6

Guess-and-Determine Plaintext Recovery Attack

- Not Require any previous knowledge of a plaintext
- Given 2³⁵ ciphertexts with different keys, any position of the plaintext byte is recovered with probability of close to one
 2³⁵ ciphertexts

RC4 is not secure even if initial keystream bytes are dropped