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Introduction

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ∈ Rn:

L =
n∑

i=1

bi · Z = {Bx : x ∈ Zn} ⊂ Rn

A lattice has infinitely many bases:

L =
n∑

i=1
ci · Z

Definition (Lattices)

A discrete additive subgroup of Rn
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Introduction

The shortest vector v in a lattice:
lattice point with minimum distance λ1 =‖ v ‖ to the origin

λ1(L) = min
x6=0, x∈L

‖ x ‖

More generally, λk denotes
the smallest radius of a ball
containing k linearly
independent vectors
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Computational Problems

Definition (Shortest Vector Problem)

Given a basis B = {b1, . . . ,bn}, find the shortest nonzero vector v
in the lattice L(B), i.e. ‖ v ‖= λ1
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Hash function

Lattice-based hash function [Ajtai96]:

fA(x) = A · x mod q

Input parameters:

q ∈ Z (e.g. 219)

Choose A ∈ Zn×m
q uniformly at random, n (e.g. n=256) is

main security parameter

m > n · log2 q

x is from a bounded domain, e.g. x ∈ {0, 1}n
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Hash Function

fA(x) = A · x mod q:

is a compression function

maps m bits to n log2 q bits

inversion and finding collisions as hard as worst-case lattice
problems
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Hash Function

Hardness of finding collisions

Finding collisions in the average case, where A is chosen at
random, is hard, provided approximating SIVP is hard in the
worst-case
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From Hash Functions to a Signature Scheme

Signature scheme by Gentry, Peikert and Vaikunthanatan [GPV08]
using Preimage Sampleable Trapdoor Functions (PSTF):

Hash-and-Sign for lattices

Keygen: random matrix A ∈ Zn×m
q and trapdoor R, RO H(·),

PSTF: fA(x) = A · x mod q

Signing of message m: signature σ = f −1A (H(m)) using
trapdoor R.

Verification: ‖ σ ‖≤ bound and fA(σ) = H(m)

Similar to RSA Hash-and-Sign, but Verification process differs

Forging signatures as hard as inverting lattice-based hash
functions

Secure in the RO
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From Hash Hunctions to a Signature Scheme

Main challenge:

How to generate random Matrix A, enabling the signer to sign
messages?

Solution: Use the trapdoor R to generate a random matrix A.
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From Hash Functions to a Signature Scheme

Construction of A according to Micciancio an Peikert
[MP12]:

A =
[

Ā | G− ĀR
]

Parameters:

Ā ∈ Zn×n
q is uniformly dist.

R ∈ Zn×nk is the secret/trapdoor (small entries)

A is pseudorandom (comp. instantiation)
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From Hash Functions to a Signature Scheme

Implementation issues:

q = 2k more suitable for practice

entries of R are sampled from a discrete Gaussian

G =

1 2 . . . 2k−1 0
. . .

0 1 2 . . . 2k−1


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From Hash Functions to a Signature Scheme

How to compute signature f −1(u), u =


u1
u2
...
un

 ∈ Zn
q:

Sample x ∈ Znk according to the discrete Gaussian
distribution s.th. G · x = u mod q

Then signature σ =

[
R
I

]
· x is a preimage of u

Proof:

A · σ =
[

Ā | G− ĀR
]
·
[

R
I

]
· x =

ĀR · x + (G− ĀR) · x = G · x = u
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From Hash Hunctions to a Signature Scheme

Problem:

Distribution of σ is skewed

Leaks information about the trapdoor

Need for spherically distributed signatures
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Signature Scheme

Solution: Add perturbations p to correct distribution of signature

Sample perturbations p with covariance matrix

C = s2I− r2
[

RR> R
R> I

]
and perturbation matrix

√
C

Compute perturbed syndrome v = H(m)− Ap = u − Ap

Sample x such that Gx = v

Signatures: σ =

[
R
I

]
· x + p

Distribution of signatures independent from secret key
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Contributions

Implementation and Improvements:

Construction of the ring variant for more efficiency and
practicality

Space improvement of perturbation matrix used to sample
preimages

Runtime improvement of Keygen and Signing due to improved
perturbation matrix (sparse) and ring variant

Implementation of the signature scheme (ring and matrix
variant)
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Contributions

Ring variant:

Consider the Ring Rq = Zq[X ]/xn + 1 for n = 2d and q = 2k

Choose a polynomial a uniformly at random from Rq

Draw k Ring-LWE-samples ari + ei

Furthermore, consider the primitive vector of polynomials
g> = [1, . . . , 2k−1]

The public key is

A = [1, a, g1 − (ar1 + e1), . . . , gk − (ark + ek)]
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Contributions

A = [1, a, g1 − (ar1 + e1), . . . , gk − (ark + ek)]

A primitive matrix of polynomials G is explicitly not required

[a, ar1 + e1, . . . , ark + ek ] is pseudorandom

Sampling preimages slightly differs from the matrix variant
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Contributions

How to sample x ∈ Rk−1
q such that g>x =

k−1∑
i=0

2ixi = u ∈ Rq

Consider matrix expansion of g>:

G̃ = [In|2In| . . . |2k−1In]

There exists permutation matrix P s.th.

G̃ = G · P =

1 2 . . . 2k−1 0

. . .

0 1 2 . . . 2k−1

 · P
G from matrix variant
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Contributions

How to sample x ∈ Rk−1
q such that g>x = u ∈ Rq

We have

G̃ ·

 x1
. . .

xk−1

 = u

Thus, sample x s.th. G · x = u

x̃ = P> · x is a preimage for G̃ since

G̃x̃ = G · PP> · x = Gx = u

If x spherically distributed, then so x̃.
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Contributions

How to sign a message m:

Sample perturbation polynomials p = [p1, . . . ,pk+2]

Compute perturbed syndrome v = H(m)− A · p
Sample x ∈ Rk s.th. g>x = v

Signature is

σ = p + [ex, rx, r1x1, . . . , rkxk]

Signature is spherically distributed
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Experimental results

Running times for ring (polynomials) and matrix version
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Experimental results

Sizes for ring (polynomials) and matrix version
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Thanks for your attention!
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