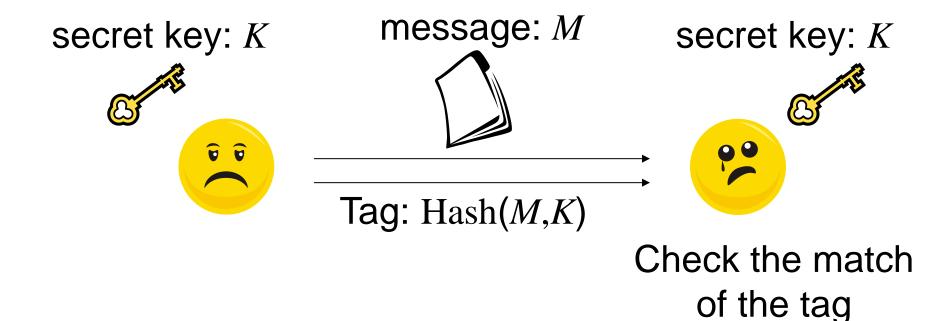
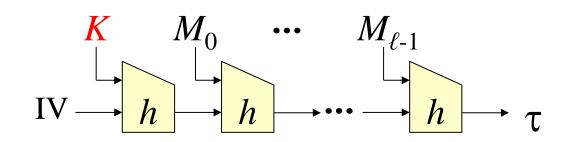


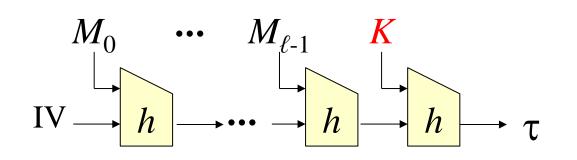
Improved Single-Key Distinguisher on HMAC-MD5 and Key Recovery Attacks on Sandwich-MAC-MD5


Yu Sasaki¹ and Lei Wang²

¹NTT Secure Platform Laboratories ²Nanyang Technological University, Singapore SAC 2013 (16/August/2013)

Hash Function Based MAC


 Message Authentication Codes (MAC) provide the integrity and authenticity.

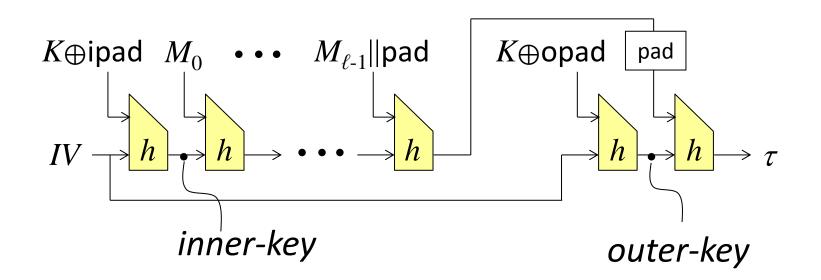

Classical MAC Constructions

Prefix

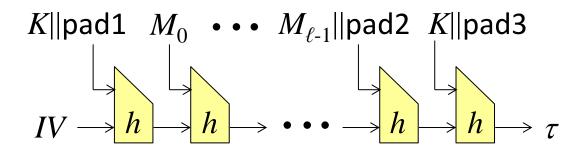

Length extension attack

• Suffix

Collision attack


• Hybrid

HMAC


- The most widely used hash-based MAC
 - Requires 2 keys for inner and outer functions
 - Requires 2 hash function calls
 - 3 additional blocks for converting hash into MAC;
 non-negligible overhead for short messages

Sandwich-MAC

- Several MACs improve HMAC
- Sandwich-MAC [Yasuda ACISP 2007] has advantages on performance.
 - Requires 1 key
 - Requires 1 hash function call
 - 2 additional blocks for converting hash into MAC;
 small overhead, suitable for short messages

Motivation

- HMAC and Sandwich-MAC have the same provable security: secure PRF up to $O(2^{n/2})$.
- Need more comparison

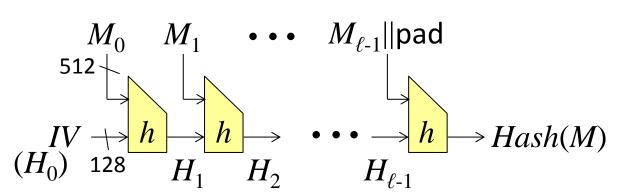
- We investigate attacks when a weak hash function (MD5) is instantiated.
- Then, extract features which can be applied in generic.

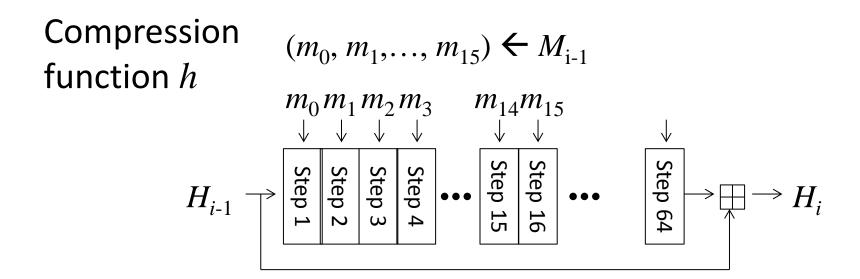
Our Contributions

- 1. Improve the internal state recovery attack on HMAC-MD5 both in adaptive and non-adaptive settings.
- 2. By using the above, propose a key-recovery attack on Sandwich-MAC-MD5.
 - First key recovery attack on hybrid-type MACs
 - conditional key distribution technique
- 3. Improve the attack on MD5-MAC $_{K_0,K_1,K_2}$.
 - Improve the complexity to recover K_1 .
 - Propose the first key recovery attack for K_2 .

Attack Results

Target	Model	Attack goal	Data	Time	Memory	Ref.
HMAC-MD5	Adaptive Adaptive Non-adaptive Non-adaptive	,	$2^{97} \\ 2^{89.09} \\ 2^{113} \\ 2^{113-x}$	$ \begin{array}{r} 2^{97} \\ 2^{89} \\ 2^{113} \\ 2^{113-x} \end{array} $	2^{89} 2^{89} 2^{66} 2^{66+x}	[32] Ours [32] Ours
MD5-MAC		K_1 -recovery K_1 -recovery (K_1, K_2) -recovery	$2^{97} \\ 2^{89.09} \\ 2^{89.04}$	2^{97} 2^{89} 2^{89}	2^{89} 2^{89} 2^{89}	[32] Ours Ours
Sandwich- MAC-MD5	Basic Variant B Extended B	Key recovery Key recovery Key recovery	$2^{89.04} 2^{89.04} 2^{89.04}$	2^{89} 2^{89} 2^{89}	2^{89} 2^{89} 2^{89}	Ours Ours Ours

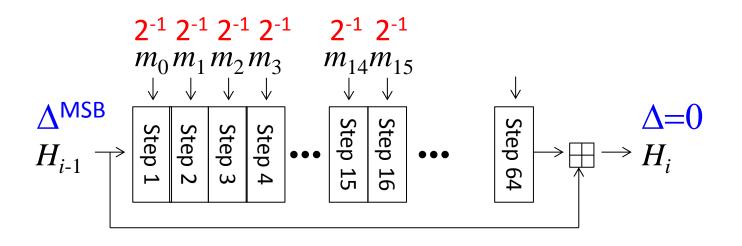

Improved Single-key Attacks against HMAC-MD5



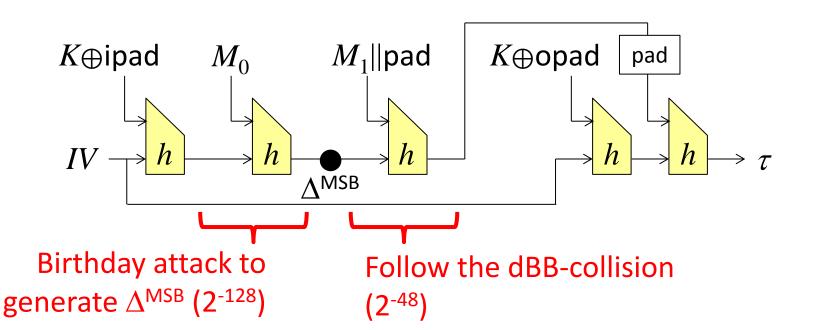
MD5

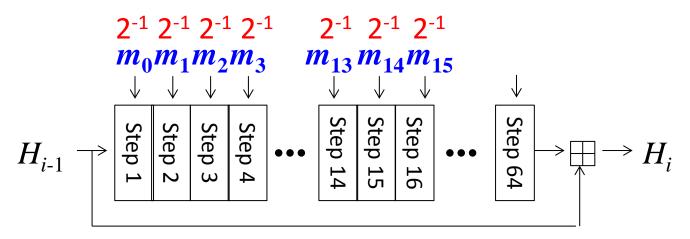
Widely known to be broken but still widely used

Merkle-Damgård structure

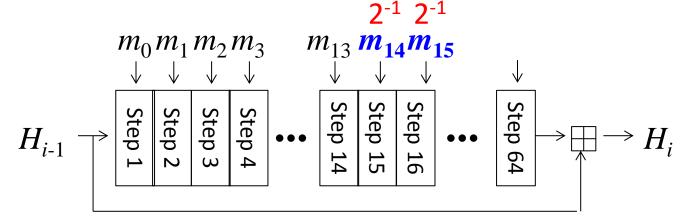


dBB-collision


- The compression function h generates a collision with probability 2^{-48} for (H_{i-1}, M_{i-1}) and (H_{i-1}, M_{i-1}) when $H_{i-1} \oplus H_{i-1}$ has a special difference called Δ^{MSB} .
- In the dBB-collision, each of the first 16 steps has the differential characteristic with $Pr.=2^{-1}$.


Previous Attack against HMAC-MD5

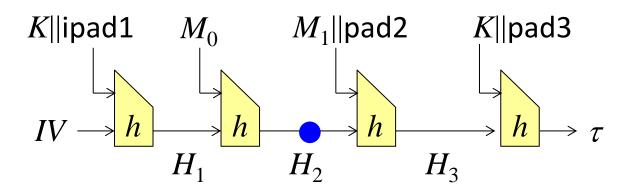
- 1. Generate $2^{128} \times 2^{48} = 2^{176}$ pairs by changing M_0 .
 - One pair satisfies the dBB-collision.
 - We have other $2^{176-128}=2^{48}$ collisions. (noise)
- 2. For each 2^{48} collisions, change M_1 2^{48} times.
 - If another collision is found, it is a dBB-collision.



Improving ISR against HMAC-MD5

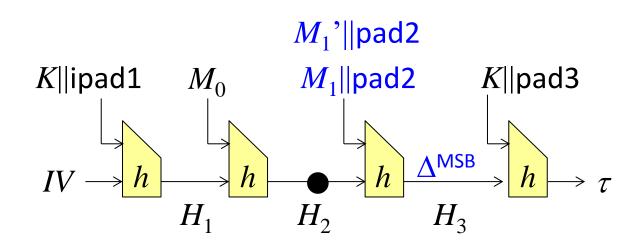
Previous work: retake all messages \rightarrow Pr = 2⁻⁴⁸.

Ours: Reuse the messages for the first 14 steps so that the characteristic remains satisfied. \rightarrow Pr = 2^{-34} .

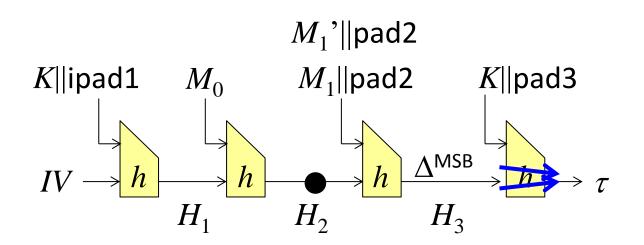


Key Recovery Attacks against Sandwich-MAC-MD5

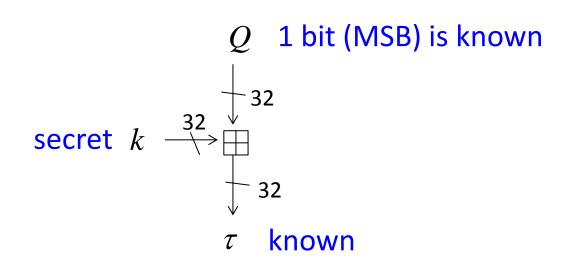
Phase 1: Internal State Recovery


• Recover the internal state value H_2 , similarly with the internal state recovery on HMAC-MD5.

Phase 2: IV Bridge

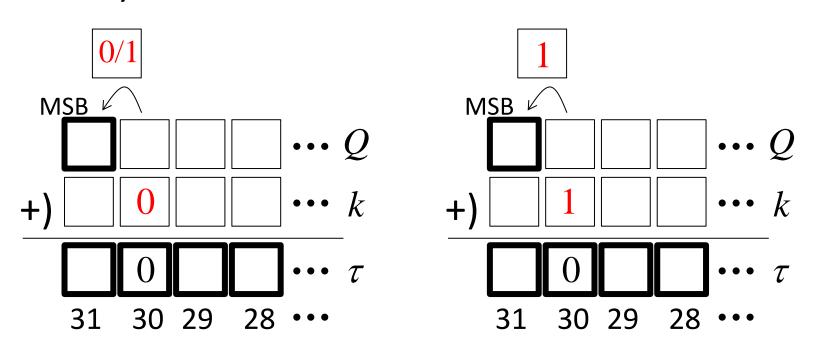

- From the recovered H_2 , find (M_1, M_1') which generates $\Delta^{\rm MSB}$ at H_3 .
- This can be done by a variant of collision attack called IV Bridge with a complexity of 2¹⁰ [Tao+ ePrint].

Phase 3: Collecting dBB-near-collisions


- By querying 2⁴⁸ IV bridges, one tag collision is obtained. To be precise, 2⁴⁷ IV bridges to obtain dBB-near-collisions enough.
- For the dBB-near-collision, 1 bit of internal state is recovered because the characteristic is satisfied.

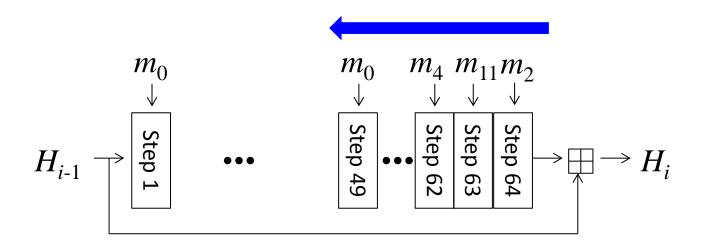
Key Recovery with Conditional Key Distributions

• Due to the structure of the MD5 compression function, 32 bits of the tag τ are computed by (internal state Q) \boxplus (a part of secret key k)



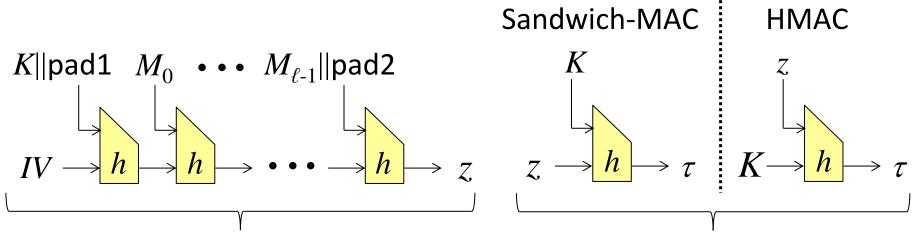
• By collecting 2^{32} pairs of such (Q, τ) , the secret key k can be recovered.

Conditional Key Distributions: Overview


- Collect pairs in which the 30th bit of τ is 0.
 - 1. If the 30^{th} bit of k is 0: two possible carry patterns
 - 2. If the 30th bit of k is 1: one possible carry pattern
- Behavior of the addition depends on the key value. This eventually reveals the 30^{th} and 31^{st} bits of k.

Phase 4: Rest of Attacks

- The key for the last step is recovered by using the conditional key distribution.
- Then, all keys are recovered step by step for the last 16 steps.

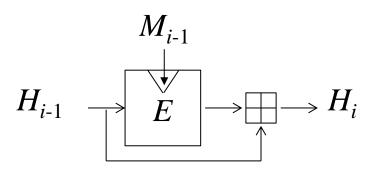


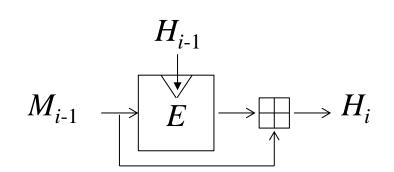
Discussion: HMAC v.s. Sandwich-MAC

Comparison of HMAC and Sandwich-MAC

Message processing part is identical.

Finalization is different.


- Sandwich-MAC: A differential characteristic to recover the internal state is reused to recover *K*.
- HMAC: Two good characteristics are needed to recover K.



Comparison for Block-cipher Based Hash

Davies-Meyer mode

MMO mode

- In hybrid MACs, the MMO mode is the only choice for the finalization computation to resist side-channel analysis [Okeya ACISP 2006].
- Most of the currently used hash function adopts the Davies-Meyer mode.
- The HMAC construction is the most reasonable!!

Concluding Remarks

Attacks with MD5

- Improved internal state recovery attack on HMAC-MD5 in adaptive and non-adaptive settings.
- Key-recovery attack on Sandwich-MAC-MD5 with conditional key distribution techniques.
- Improve the attack on MD5-MAC.

Comparison with HMAC and Sandwich-MAC

- A certain type of differential characteristic can recover the key for Sandwich-MAC.
- From various viewpoints, HMAC is a solid design.

Thank you for your attention!!