Similarities between encryption and decryption: how far can we go?

Anne Canteaut

Inria, France and DTU, Denmark
Anne.Canteaut@inria.fr
http://www-rocq.inria.fr/secret/Anne.Canteaut/

SAC 2013

based on a joint work with Lars Knudsen and Gregor Leander
Outline

• Low-latency and lightweight ciphers

• Minimizing the overhead of decryption: involutional ciphers and involutional building-blocks

• Minimizing the overhead of decryption: reflection ciphers

• PRINCE
Iterated block ciphers

\[K \text{ master key} \]

key schedule

\[k_1 \quad k_2 \quad k_r \]

plaintext \(x \) \(F(1) \quad F(2) \quad \ldots \quad F(r) \) ciphertext \(y \)

where each \(F^{(i)} \) is a keyed permutation of \(F_2^n \).
Lightweight block ciphers

AES [Daemen-Rijmen 98][FIPS PUB 197]

- blocksize: **128** bits
- Sbox operates on 8 bits
- linear diffusion layer is a linear permutation of $\mathbb{F}_{2^8}^4$

To make it smaller in hardware:

- blocksize: **64** bits
- smaller Sbox, on 3 or 4 bits
- linear diffusion layer over a smaller alphabet
- simplified key-schedule
The usual design strategy: PRESENT [Bogdanov et al. 07]

31 rounds (+ a key addition)
Lightweight but secure...

Increase the number of rounds!

- **PRESENT** [Bogdanov et al. 07]. 31 rounds
- **LED** [Guo et al. 11]:
 LED-64: 32 rounds, LED-128: 48 rounds
- **SPECK** [Beaulieu et al. 13]:
 SPECK64/128: 27 rounds, SPECK128/256: 34 rounds
- **SIMON** [Beaulieu et al. 13]:
 SIMON64/128: 44 rounds, SIMON128/256: 72 rounds
Does lightweight mean “light + wait”? [Knežević et al. 12]
Does lightweight mean “light + wait”? [Knežević et al. 12]

Low-latency encryption.

- Memory encryption
- VANET (Vehicular ad-hoc network)
- Encryption for high-speed networking...
How can we design a fast and lightweight cipher?

Unrolled implementation.

- small number of rounds;

- each round of encryption and decryption should have a low implementation cost;

- the rounds do not need to be similar.

Related open problem.
Is it possible to provide security arguments for a cipher iterating very different rounds?
Minimizing the overhead of decryption:

involutional building-blocks
When lightweight encryption was really an issue...

http://www.nsa.gov/museum/enigma.html
Scherbius’ solution: add a reflector

\[E_K = F_K^{-1} \circ M \circ F_K \] where \(M = M^{-1} \)
Can \(E_K \) be an involution?

Fixed points. [Youssef-Tavares-Heys 96]

- A random permutation of \(\mathbb{F}_2^n \) has 1 fixed point on average;
- A random involution of \(\mathbb{F}_2^n \) has \(2^n + O(1) \) fixed points.

In particular, for \(E_K = F_K^{-1} \circ M \circ F_K \)

\(E_K \) has the same cycle structure (and the same number of fixed points) as \(M \).

- Enigma: the reflector has no fixed points;
- DES with a weak key: \(M \) is the swapping of the 2 halves → It has \(2^{32} \) fixed points [Coppersmith 85].
Add some whitening keys [Rivest 84]

FX construction

Slide attack with complexity $2^{\frac{n+1}{2}}$

[Youssef-Tavares-Heys 96][Dunkelman et al. 12]

If (m, c) and (m', c') satisfy $m \oplus c = m' \oplus c'$, then check whether $k_0 \oplus k_2 = m' \oplus c$.

Using involutional building-blocks

Examples:

- Feistel ciphers
- Involutional SPNs [Youssef-Tavares-Heys 96]
- Khazad [Barreto-Rijmen 00]
- ANUBIS [Barreto-Rijmen 00]
- NOEKEON [Daemen et al. 00]
- ICEBERG [Standaert et al. 04]...
S is a permutation over \mathbb{F}_2^m

The diffusion layer is linear over \mathbb{F}_{2^m} and has maximal branch number.
Involutional Sboxes with an SPN

Maximal expected probability for a two-round differential:

\[\text{MEDP}_2 = \max_{a \neq 0, b} \Pr_{x, K}[\Delta E_K(x) = b | \Delta x = a] \]

For the AES Sbox \(S(x) = \ell(x^{254}) \):
\[\text{MEDP}_2 = 53 \times 2^{-34} \quad \text{[Keliher-Sui 07]} \]

For the naive Sbox \(S(x) = x^{254} \):
\[\text{MEDP}_2 = 79 \times 2^{-34} \quad \text{[Daemen-Rijmen 06]} \]
\(\rightarrow \) Highest possible value for a function having similar values in its difference table \([Park et al. 03]\)
A new bound (particular case) [C.-Roué 13]

Consider an SPN with a nonlinear layer composed of t parallel applications of a function S over \mathbb{F}_{2^m} and with an MDS linear diffusion layer over \mathbb{F}_{2^m}, if $S(x) = \ell(x^s)$ or $S(x) = (\ell(x))^s$ where ℓ is an affine permutation of \mathbb{F}_{2^m}, we have

$$\text{MEDP}_2 \leq 2^{-m(t+1)} \max_{1 \leq u \leq t} \max_{\alpha, \beta \neq 0} \sum_{\gamma \in \mathbb{F}_{2^m}^*} \delta(\alpha, \gamma)^u \delta(\gamma, \beta)^{t+1-u}$$

where $\delta(a, b) = \#\{x \in \mathbb{F}_{2^m}^2, S(x + a) + S(x) = b\}$.

Moreover, the bound is tight for all MDS linear layers if one of the following conditions holds:

- $S(x) = x^s$;
- $S(x) = \ell(x^s)$ and the maximum is attained for $u = 1$.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>ζ</th>
<th>ζ²</th>
<th>ζ³</th>
<th>ζ⁴</th>
<th>ζ⁵</th>
<th>ζ⁶</th>
<th>ζ⁷</th>
<th>ζ⁸</th>
<th>ζ⁹</th>
<th>ζ¹⁰</th>
<th>ζ¹¹</th>
<th>ζ¹²</th>
<th>ζ¹³</th>
<th>ζ¹⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ζ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ζ²</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>ζ³</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ζ⁴</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ζ⁵</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ζ⁶</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ζ⁷</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ζ⁸</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ζ⁹</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ζ¹⁰</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ζ¹¹</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ζ¹²</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ζ¹³</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ζ¹⁴</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Difference table of the inverse function over \mathbb{F}_{16}
MEDP$_2$ for AES and variants

\[2^{-m(t+1)} \max_{1 \leq u \leq t} \max_{\alpha, \beta \neq 0} \sum_{\gamma \in F_{2m}^*} \delta(\alpha, \gamma)^u \delta(\gamma, \beta)^{t+1-u} \]

AES Sbox $S(x) = \ell(x^{254})$.

\[\rightarrow \text{MEDP}_2 = 53 \times 2^{-34} \]

Naive Sbox $S(x) = x^{254}$.

\[\delta(a, b) = \delta(b, a) \]

\[\max_{\alpha, \beta \neq 0} \sum_{\gamma \in F_{2m}^*} \delta(\alpha, \gamma)^u \delta(\gamma, \beta)^{t+1-u} = \max_{\alpha, \beta \neq 0} \sum_{\gamma \in F_{2m}^*} \delta(\alpha, \gamma)^u \delta(\beta, \gamma)^{t+1-u} \]

\[= \max_{\alpha \neq 0} \sum_{\gamma \in F_{2m}^*} \delta(\alpha, \gamma)^{t+1} \]

\[\rightarrow \text{MEDP}_2 = 79 \times 2^{-34} \]
Minimizing the overhead of decryption:

reflection ciphers
Reflection ciphers

Definition. A block cipher E is a reflection cipher if there exists a permutation P of the key space such that, for all K,

$$(E_K)^{-1} = E_{P(K)}$$

Examples.

- Feistel cipher with independent round keys:
 $$P(k_1, \ldots, k_r) = (k_r, \ldots, k_1)$$

- RSA:
 $$P = \text{inversion modulo } (p - 1)(q - 1).$$
Properties of the coupling permutation

\[(E_K)^{-1} = E_P(K)\]

implies

\[E_K = E_{P^2}(K)\]

Choice of \(P\).

\(P\) should be an involution.

Example:

\[P(K) = K \oplus \alpha\]
Iterated reflection cipher with $P(K) = K \oplus \alpha$

Encryption:

$m \rightarrow F_1 \rightarrow F_2 \rightarrow K \rightarrow F_r \rightarrow M \rightarrow F_r^{-1} \rightarrow K \oplus \alpha \rightarrow F_2^{-1} \rightarrow F_1^{-1} \rightarrow c$

Decryption:

$c \rightarrow F_1 \rightarrow F_2 \rightarrow K \oplus \alpha \rightarrow F_r \rightarrow M \rightarrow F_r^{-1} \rightarrow K \rightarrow F_2^{-1} \rightarrow F_1^{-1} \rightarrow m$

where M is an involution.
Example of a reflection cipher with $P(k_1, k_2) = (k_2 \oplus \alpha, k_1 \oplus \alpha)$

For all keys with $k_2 = k_1 \oplus \alpha$, the cipher is an involution, and it has the same number of fixed points as M.

\rightarrow Large class of weak keys.
Fixed points of the coupling permutation

Fixed points of P.
The keys for which the encryption function is an involution can be detected with $\mathcal{O}(2^{n/2})$ plaintext-ciphertext pairs.

Choice of P.
P should be an involution without fixed points.

Example:

$$P(K) = K \oplus \alpha$$
On related-key distinguishers for reflection ciphers

Trivial related-key distinguishers:
are not considered.
(they may be important in some scenarios, e.g., [Iwata-Kurosawa 03])

Related-key distinguishers:
may have an impact in a single-key model.

A related-key distinguisher for E_K involving two keys K and K' related by $K' = P(K)$ is a distinguisher in the single-key model.

→ Related-key distinguishers may be relevant!
On differential related-key distinguishers

Distinguishers involving K and $K' = P(K)$ should be avoided.

Two strategies:

- Choose P such that the existence of such distinguishers is very unlikely, e.g., such that $K \oplus P(K)$ has always a high weight;

- Choose P such that such related-key distinguishers can be exploited for a few K only.

Trade-off between

$$\min_{K} \text{wt}(K \oplus P(K)) \text{ and } \max_{\delta} \# \{K : K \oplus P(K) = \delta\}$$

For $P(K) = K \oplus \alpha$ where $\text{wt}(\alpha)$ is high, we maximize the first quantity.
PRINCE
Reflection cipher with $P(K) = K \oplus \alpha$
Increasing the key length

FX construction [Rivest 84]

\[k = (k_0 || k_1) \]

\[k_1 \]

\[\pi(k_0) \]

\[\oplus \]

\[\oplus \]

\[m \rightarrow c \]

with \(\pi(x) = (x \gg 1) \oplus (x \gg 63) \)

\(\rightarrow (k_0 \oplus k_1, \pi(k_0) \oplus k_1) \) takes all possible values when \((k_0, k_1)\) varies.
Security of the FX construction [Kilian–Rogaway 96]

$$FX_{k_0,k_1,k_2}(m) = F_{k_1}(m \oplus k_0) \oplus k_2$$

The advantage of any adversary who makes D queries to $E = FX$ and T queries to (F, F^{-1}) is at most

$$DT2^{-(\kappa_1+n-1)}$$
Impact of the reflection property on the FX construction

Ideal reflection cipher with coupling permutation P.

If P is an involution without fixed points, the key space can be decomposed as

$$F_2^{\kappa_1} = H \cup P(H)$$

where H contains half of the keys.

Let F be an ideal block cipher with key space H.

We extend it by

$$\tilde{F}_k(x) = \begin{cases} F_k(x) & \text{if } k \in H \\ F_{P(k)}^{-1}(x) & \text{if } k \in P(H) \end{cases}$$

Security of the \tilde{FX} construction.

The advantage of any adversary who makes D queries to $E = \tilde{F}X$ and T queries to (F, F^{-1}) is at most

$$DT2^{-(\kappa_1+n-2)}.$$
Parameters

- Block size: 64 bits
- Key size: 128 bits
- Nb of Sbox layers: 12

Security claim in the single-key model:

126-bit security

There is no attack with time and data complexities are such that

$$DT \ll 2^{126}$$

Best attack.

MitM attack on 8 rounds with $$DT = 2^{124}$$

[C. Naya-Plasencia Vayssière 13].
Conclusions and open issues

- **Involutional building-blocks** may introduce some weaknesses in some cases. How can we use them in secure way?

- Reflection ciphers considerably reduce the overhead on decryption on top of encryption for unrolled implementations.

- Find some **other key schedules** (work in progress).