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Abstract. White-box cryptography aims to protect the secret key of a
cipher in an environment in which an adversary has full access to the
implementation of the cipher and its execution environment. In 2002,
Chow, Eisen, Johnson and van Oorschot proposed a white-box imple-
mentation of AES. In 2004, Billet, Gilbert and Ech-Chatbi presented an
e�cient attack (referred to as the BGE attack) on this implementation,
extracting its embedded AES key with a work factor of 230. In 2012,
Tolhuizen presented an improvement of the most time-consuming phase
of the BGE attack. The present paper includes three contributions. First
we describe several improvements of the BGE attack. We show that the
overall work factor of the BGE attack is reduced to 222 when all im-
provements are implemented. This paper also presents a new attack on
the initial white-box implementation of Chow et al. This attack exploits
collisions occurring on internal variables of the implementation and it
achieves a work factor of 222. Eventually, we address the white-box AES
implementation presented by Karroumi in 2010 which aims to withstand
the BGE attack. We show that the implementations of Karroumi and
Chow et al. are the same, making them both vulnerable to the same
attacks.

Keywords. White-box Cryptography, AES Implementation, Dual Ci-
pher, Cryptanalysis.

1 Introduction

In 2002, Chow et al. introduced the concept of white-box cryptography by pre-
senting a white-box implementation of AES [5]. White-box cryptography aims to

? The present paper is a merged abstract of two independent but overlapping works: a
paper by De Mulder, Roelse and Preneel [11] and a paper by Lepoint and Rivain [7].



What is
White-Box Cryptography ?



‣ focuses on the software implementation of cryptographic primitives 
executed in an untrusted environment.

‣ aims at protecting the embedded secret cryptographic key; it has the 
objective that the white-box implementation behaves as a “virtual 
black box”:

‣ a white-box adversary may not have any advantage over a black-box 
attacker, i.e., he is unable to extract any more key information than he could 
extract under a black-box attack (oracle access to the WB implementation).

White-Box Cryptography



• Black-box attacker:
‣ only has access to the input/output 

behavior of the cryptographic algorithm.

‣ has no visibility into its execution.

• White-box attacker:
‣ h a s f u l l a c c e s s t o t h e s o f twa r e 

implementation of the cryptographic 
algorithm.

‣ has full control over its execution 
environment.

‣ has the goal to extract the secret 
cryptographic key (key recovery).
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Figure 2.2: The evolution of the various attack models. {fig:attackModels}

2.5 Cryptanalytic Techniques
{sec:cryptanalyticTechniques}

2.5.1 Black-Box Cryptanalysis
{sec:blackBoxCrypt}

Two di�erent classes of black-box attacks can be distinguished: (i) the generic
attacks which only exploit the core properties of the cipher such as the block
and key size, and (ii) the non-generic attacks which exploit additionally the
internal structure/specification of the block cipher. As mentioned earlier, the
former class of attacks can be mounted against ideal block ciphers. Below, a
selection of the most common black-box attacks is highlighted.

Generic Attacks

Exhaustive key search. The exhaustive key search attack, also known as
the brute force attack, belongs to the class of generic attacks and hence is
independent of the design specification of the block cipher. As the name of the
attack suggests, the attack simply consists of testing all possible values of the
secret key. This ‘key-test’ can be performed in the ciphertext-only setting which
relies on redundancy (i.e., a biased statistical distribution) in the plaintext in
order to identify the correct key. However, ideally, a known plaintext/ciphertext
pair in the known plaintext setting is prefered. The ‘time’ work factor of the
brute-force attack to retrieve a nk-bit secret key equals about 2nk encryption
operations, where the computation cost of the key scheduling algorithm (if
applicable) should be taken into account. In case more than one key is given
as output for the original plaintext/ciphertext pair, the attack needs to be
repeated for additional plaintext/ciphertext pairs. Optimizations are possible
through the parallelization of the exhaustive key search.
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‣ S-box Blanking Attack [Kerins and Kursawe,  2006]
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When the attacker has knowledge of the internal structure 
of a cryptographic primitive, the way how it is implemented 
is the sole remaining line of defense.



Use case: a (very) simplified DRM model

• The trusted digital media player (containing the WB implementation) is 
deployed in an untrusted environment (the end-user’s playback device).

• The goal of a malicious behaving end-user is to extract the secret 
decryption key out of the decryption routine in order to:

‣ decrypt the encrypted content while circumventing the License Verification

‣ distribute the key to non-authorized end-users

Remote Content Provider

Ekm

License 
Generator

User’s Playback Device

Lic License Verifier

Dk

YES NO

player

Ek(m) k Lic

WB Impl.Ek(m) m

EVE



White-Box AES 
Implementation



State-of-the-Art



White-box AES Implementation
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White-box AES Implementation 
based on Dual Ciphers of AES
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De Mulder, Roelse and 
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Aspects of Chow’s
White-Box AES Implementation



Descriptions of AES-128

1. AddRoundKey (K(1));
2. for r from 1 to 9:

(a) SubBytes;

(b) ShiftRows;

(c) MixColumns;

(d) AddRoundKey (K(r+1));

3. SubBytes;
4. ShiftRows;
5. AddRoundKey (K(11)).

Conventional way: Used for WB AES:

^

^

(

R
ound 1-9

R
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R
ound 1-9

R
ound 10

1. for r from 1 to 9:
(a) ShiftRows;

(b) AddRoundKey (K(r));

(c) SubBytes;

(d) MixColumns;

2. ShiftRows;
3. AddRoundKey (K(10));
4. SubBytes;
5. AddRoundKey (K(11)).

(
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Fig. 5. � ne of the four R

r
j mappings, j � � , . . . , �

GF(2)-a�ne, except for the permutation P

1
i,j

whose non-a�ne part has not been
determined. In a second step, we recover those GF(2)-a�ne mappings (but P

1
i,j

and Q

1
i,j

), first up to an unknown GF(28)-a�ne bijection, and then entirely.
Eventually combining all this information in a third step, we extract the AES-
128 key.

3.1 Recovering Non-Linear Parts

Consider the mapping R

r

j

. We are trying to remove the non-linearity in the
parasites (Qr

i

)
i=0,...,3. To this end consider y0 as a function of (x0, x1, x2, x3),

and fix the values of x1, x2, and x3 to some constants, say c1, c2, and c3. One
easily checks that there exists two constants in GF(28), namely ↵ independent
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Since x only takes 256 values, those mappings are known by input/output, as
well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
and keeping the other one fixed, has the e↵ect that �

c
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,c

0
3

takes all the values
in GF(28). We are thus able to produce—as lookup tables, of course—all the
functions

y0(x, c1, c2, c3) � y0(x, c1, c2, c
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takes all the values in GF(28). This leads to
the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q � �
�

� Q

�1}
�2gf(28) given by

values, where Q is a permutation of GF(28) and �
�

is the translation by �

in GF(28), one can construct a particular solution

e
Q such that there exists an

a�ne mapping A so that

e
Q = Q �A.

Appeared in H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 227–240, 2005.
c� Springer-Verlag Berlin Heidelberg 2005
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8 8 8 8

for 0 ≤ j ≤ 3 and 1 ≤ r ≤ 9

for r from 1 to 9:

(a) ShiftRows;

(b) AddRoundKey (K(r));
(c) SubBytes;
(d) MixColumns;



Encoded AES Subround
the naive version the generic version
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Revisiting the BGE Attack



BGE Attack
Phase 1
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‣ the same for the input through round r-1
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set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q � �
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� Q

�1}
�2gf(28) given by

values, where Q is a permutation of GF(28) and �
�
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in GF(28), one can construct a particular solution
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Q such that there exists an

a�ne mapping A so that

e
Q = Q �A.
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whose non-a�ne part has not been
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1
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and Q

1
i,j

), first up to an unknown GF(28)-a�ne bijection, and then entirely.
Eventually combining all this information in a third step, we extract the AES-
128 key.
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are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.
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), first up to an unknown GF(28)-a�ne bijection, and then entirely.
Eventually combining all this information in a third step, we extract the AES-
128 key.
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those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.
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Phase 3:
‣ apply Phases 1 and 2 to rounds r 

and r+1 to obtain the round keys
‣ relate both round keys via:
1. the white-box implementation
2. the AES key scheduling algorithm

Original 
BGE Attack

Improved
BGE Attack

total work factor: 230 total work factor: 222

no given work factor

[Tolhuizen, 2012]Phase 1:

Phase 2:

‣ apply Phases 1 and 2 only to round 
r to obtain the rth round key

‣ a new method to obtain the (r+1)th 
round key

‣ an efficient method to determine 
the correct order of the round keys
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BGE Attack
Phase 3

‣ obtain the (r+1)th round key

‣ correctness:                      is non-affine for 
all non-zero values of c
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GF(2)-a�ne, except for the permutation P

1
i,j

whose non-a�ne part has not been
determined. In a second step, we recover those GF(2)-a�ne mappings (but P

1
i,j

and Q

1
i,j

), first up to an unknown GF(28)-a�ne bijection, and then entirely.
Eventually combining all this information in a third step, we extract the AES-
128 key.

3.1 Recovering Non-Linear Parts

Consider the mapping R
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. We are trying to remove the non-linearity in the
parasites (Qr

i

)
i=0,...,3. To this end consider y0 as a function of (x0, x1, x2, x3),

and fix the values of x1, x2, and x3 to some constants, say c1, c2, and c3. One
easily checks that there exists two constants in GF(28), namely ↵ independent
of c1, c2, c3, and �
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Since x only takes 256 values, those mappings are known by input/output, as
well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
and keeping the other one fixed, has the e↵ect that �
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takes all the values
in GF(28). We are thus able to produce—as lookup tables, of course—all the
functions
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takes all the values in GF(28). This leads to
the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q � �
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� Q

�1}
�2gf(28) given by

values, where Q is a permutation of GF(28) and �
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is the translation by �

in GF(28), one can construct a particular solution

e
Q such that there exists an

a�ne mapping A so that

e
Q = Q �A.
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GF(2)-a�ne, except for the permutation P

1
i,j

whose non-a�ne part has not been
determined. In a second step, we recover those GF(2)-a�ne mappings (but P

1
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and Q

1
i,j

), first up to an unknown GF(28)-a�ne bijection, and then entirely.
Eventually combining all this information in a third step, we extract the AES-
128 key.
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parasites (Qr
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)
i=0,...,3. To this end consider y0 as a function of (x0, x1, x2, x3),

and fix the values of x1, x2, and x3 to some constants, say c1, c2, and c3. One
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Since x only takes 256 values, those mappings are known by input/output, as
well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
and keeping the other one fixed, has the e↵ect that �
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in GF(28). We are thus able to produce—as lookup tables, of course—all the
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the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.
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determined. In a second step, we recover those GF(2)-a�ne mappings (but P
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and Q
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), first up to an unknown GF(28)-a�ne bijection, and then entirely.
Eventually combining all this information in a third step, we extract the AES-
128 key.
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parasites (Qr
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i=0,...,3. To this end consider y0 as a function of (x0, x1, x2, x3),
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Since x only takes 256 values, those mappings are known by input/output, as
well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
and keeping the other one fixed, has the e↵ect that �
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the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q � �
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well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
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in GF(28). We are thus able to produce—as lookup tables, of course—all the
functions

y0(x, c1, c2, c3) � y0(x, c1, c2, c
0
3)
�1 = Q0

�
Q

�1
0 (x)� �

�
, (1)

where � = �

c

1

,c

2

,c

0
3

� �

c

1

,c

2

,c

3

takes all the values in GF(28). This leads to
the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q � �
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� Q

�1}
�2gf(28) given by

values, where Q is a permutation of GF(28) and �
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in GF(28), one can construct a particular solution

e
Q such that there exists an
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e
Q = Q �A.
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Dual AES Ciphers

operations in the polynomial representation associated with R

l

are denoted by
�

l

and ⌦
l

, respectively (�
l

and ⌦
l

being equal to � and ⌦ for exactly one value
of l with 1  l  30). Finally, the definition of a dual AES subround uses a set
of mappings, denoted by T , and defined by

T = {R
l

�m
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� f
t

| 1  l  30,↵ 2 F

⇤
256 and 0  t  7} .

Observe that an element of T maps elements in the AES polynomial represen-
tation to elements in one of the 30 polynomial representations of F256.
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. Further, let
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. The mapping AES
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4
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for 0  i  3.

The following lemma presents a property that is required to show that a dual
AES cipher maintains the functionality of AES. As the lemma is also used in
the cryptanalysis in this paper, and as a formal proof of this property is omitted
in [4] and [6], we include a proof as well.
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Proof. Let x
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for 0  i  3 be elements of F256 using the AES polynomial
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i
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isomorphisms between the AES polynomial representation of F256
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Conclusions
‣ reduced the work factor of the BGE attack from 230 to 222

- non-affine encodings and permutations on the round key bytes have a negligible 
contribution to the overall work factor of the improved BGE attack

‣ a new attack based on internal collision with work factor 222

‣ insecurity of Karroumi’s white-box AES implementation

Open problem: new WB-AES designs?
‣ Research for new secure WBAES designs: fixed key vs. dynamic key

‣ WBC part of bigger program: additional layers of security by 
obfuscation techniques

‣ Companies: “security through obscurity”



Questions?


