Two Attacks on a White-Box AES Implementation

Tancrède Lepoint^{1,2}, Matthieu Rivain¹, <u>Yoni De Mulder³</u>, Peter Roelse⁴, and Bart Preneel³

1 CryptoExperts, France
{tancrede.lepoint,matthieu.rivain}@cryptoexperts.com

 $^{2}\,$ École Normale Supérieure, France

³ KU Leuven and iMinds, Belgium {yoni.demulder,bart.preneel}@esat.kuleuven.be

ir.deta

⁴ Irdeto B.V., The Netherlands peter.roelse@irdeto.com

SAC 2013, Vancouver, Canada

August 15th, 2013

III iMinds

KU LEUVEN

What is White-Box Cryptography ?

White-Box Cryptography

- focuses on the software implementation of cryptographic primitives executed in an **untrusted** environment.
- aims at protecting the embedded secret cryptographic key; it has the objective that the white-box implementation behaves as a "virtual black box":
 - ▶ a white-box adversary may not have any advantage over a black-box attacker, i.e., he is unable to extract any more key information than he could extract under a black-box attack (oracle access to the WB implementation).

- Black-box attacker:
- only has access to the input/output behavior of the cryptographic algorithm.
- ▶ has no visibility into its execution.

- White-box attacker:
- ▶ has <u>full access</u> to the software implementation of the cryptographic algorithm.
- ▶ has <u>full control</u> over its execution environment.
- ▶ has the goal to extract the secret cryptographic key (key recovery).

When the attacker has knowledge of the internal structure of a cryptographic primitive, <u>the way how it is implemented</u> <u>is the sole remaining line of defense</u>.

Use case: a (very) simplified DRM model

- The **trusted** digital media player (containing the WB implementation) is deployed in an **untrusted** environment (the end-user's playback device).
- The goal of a malicious behaving end-user is to extract the secret decryption key out of the decryption routine in order to:
 - decrypt the encrypted content while circumventing the License Verification
 - distribute the key to non-authorized end-users

White-Box AES Implementation

State-of-the-Art

White-box AES Implementation Chow, Eisen, Johnson, van Oorschot [2002]

> Billet, Gilbert and Ech-Chatbi [2004]

> > Generic Class

Michiels, Gorissen and Hollmann [2008] Perturbated White-box AES Implementation Bringer, Chabanne, Dottax [2006]

> De Mulder, Wyseur and Preneel [2010]

White-box AES Implementation based on Wide Linear Encodings Xiao and Lai [2009]

> De Mulder, Roelse and Preneel [2012]

White-box AES Implementation based on Dual Ciphers of AES Karroumi [2010]

Aspects of Chow's White-Box AES Implementation

Descriptions of AES-128

Round 1-9

Round 10

Conventional way:

- 1. AddRoundKey $(K^{(1)})$;
- 2. for r from 1 to 9:
 - (a) SubBytes;
 - (b) ShiftRows;
 - (c) MixColumns;
 - (d) AddRoundKey $(K^{(r+1)})$;
- 3. SubBytes;
- 4. ShiftRows;
- 5. AddRoundKey $(K^{(11)})$.

Used for WB AES:

- 1. for r from 1 to 9:
 (a) ShiftRows;
 - (b) AddRoundKey $(\hat{K}^{(r)})$;
 - (c) SubBytes;
 - (d) MixColumns;
- 2. ShiftRows;
- 3. AddRoundKey $(\hat{K}^{(10)});$
- 4. SubBytes;
- 5. AddRoundKey $(K^{(11)})$.

AES Subround

for $0 \le j \le 3$ and $1 \le r \le 9$

Revisiting the BGE Attack

BGE Attack Phase 1

- ▶ obtain the output encodings up to an affine part
- the same for the input through round r-1

BGE Attack

Phase 2

- fully recover the affine output encodings and the keydependent affine input encodings
- ▶ fully recover the affine input encodings through round r-1

BGE Attack Phase 3

- obtain the $(r+1)^{\text{th}}$ round key
- correctness: $S(c \oplus S^{-1}(x))$ is non-affine for all non-zero values of c

New Attack based on Collisions

$$\begin{array}{l} 02 \otimes S_0^{(r,j)}(\alpha) \oplus 03 \otimes S_1^{(r,j)}(0) = 02 \otimes S_0^{(r,j)}(0) \oplus 03 \otimes S_1^{(r,j)}(\beta) \\ 256 \text{ pairs } (\alpha,\beta) \text{ with the trivial solution } (\alpha,\beta) = (0,0) \end{array}$$

Cryptanalysis of Karroumi's White-Box AES Implementation

Dual AES Ciphers

[Barkan and Biham, 2002]

[Biryukov, De Cannière, Braeken, and Preneel, 2003]

$$\begin{split} C &= \operatorname{AES}_k(P) \\ & \left| (\Delta \in \mathcal{T}) \quad \text{with} \quad |\mathcal{T}| = 61.200 \\ \Delta(C) &= \operatorname{AES}_k^{\Delta} \left(\Delta(P) \right) \end{split}$$

$$\mathcal{T} = \{R_l \circ m_\alpha \circ f_t \mid 1 \leq l \leq 30, \alpha \in \mathbf{F}^*_{256} \text{ and } 0 \leq t \leq 7\}$$
squaring operations $f_t(x) = x^{2^t}$
multiplication with a non-zero constant $m_\alpha(x) = \alpha \otimes x$
isomorphisms between the AES polynomial representation of \mathbf{F}_{256}
and one of the 30 polynomial representations of \mathbf{F}_{256}

An encoded dual AES subround ...

... is in fact an encoded AES subround

Conclusions

- reduced the work factor of the BGE attack from 2^{30} to 2^{22}
 - non-affine encodings and permutations on the round key bytes have a negligible contribution to the overall work factor of the improved BGE attack
- a new attack based on internal collision with work factor 2^{22}
- insecurity of Karroumi's white-box AES implementation

Open problem: new WB-AES designs?

- Research for new secure WBAES designs: fixed key vs. dynamic key
- WBC part of bigger program: additional layers of security by obfuscation techniques
- Companies: "security through obscurity"

Questions?